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Abstract: We analyze rare K and B decays in the Littlest Higgs (LH) model without T-

parity. We find that the final result for the Z0-penguin contribution contains a divergence

that is generated by the one-loop radiative corrections to the currents corresponding to the

dynamically broken generators. Including an estimate of these logarithmically enhanced

terms, we calculate the branching ratios for the decays K+ → π+νν̄, KL → π0νν̄, Bs,d →
µ+µ− and B → Xs,dνν̄. We find that for the high energy scale f = O(2−3)TeV, as required

by the electroweak precision studies, the enhancement of all branching ratios amounts to

at most 15% over the SM values. On the technical side we identify a number of errors

in the existing Feynman rules in the LH model without T-parity that could have some

impact on other analyses present in the literature. Calculating penguin and box diagrams

in the unitary gauge, we find divergences in both contributions that are cancelled in the

sum except for the divergence mentioned above.
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1. Introduction

The Little Higgs models [1]-[5] offer an attractive and a rather simple solution to the gauge

hierarchy problem. In these models the electroweak Higgs boson is regarded as a pseudo-

Goldstone boson of a certain global symmetry that is broken spontaneously at a scale

f ∼ O (1 TeV), much higher than the vacuum expectation value v of the standard Higgs

doublet. The Higgs field remains then light, being protected by the approximate global

symmetry from acquiring quadratically divergent contributions to its mass at the one-loop
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level. On the diagrammatic level the new heavy particles present in these models cancel,

analogously to supersymmetric particles, the quadratic divergencies in question. Reviews

on the Little Higgs models can be found in [6].

One of the simplest models of this type is the “Littlest Higgs” model [4] (LH) in which,

in addition to the Standard Model (SM) particles, new charged heavy vector bosons (W±
H ),

a neutral heavy vector boson (Z0
H), a heavy photon (A0

H), a heavy top quark (T ) and

charged and neutral heavy Higgs scalars are present. Among the scalars only the single

charged scalar (Φ±) is important in principle for rare decays. The details of this model

including the Feynman rules have been worked out in [7] and the constraints from various

processes, in particular from electroweak precision observables and direct new particles

searches, have been extensively discussed in [7]-[13]. It has been found that except for the

heavy photon A0
H , that could still be as “light” as 500 GeV, the masses of the remaining

particles are constrained to be significantly larger than 1 TeV.

Much less is known about the flavour changing neutral current (FCNC) processes in the

LH model. As these processes played an essential role in the construction of the SM and in

the tests of its extensions, it is important to check whether the LH model is consistent with

the existing data on FCNC processes and whether the deviations from the SM expectations

predicted in this model are sufficiently large so that they could be detected in present and

future experiments.

In [14] we have calculated the K0 − K̄0, B0
d,s − B̄0

d,s mixing mass differences ∆MK ,

∆Md,s and the CP-violating parameter εK in the LH model. We have found that even

for f/v as low as 5, the enhancement of ∆Md amounts to at most 20% for the Yukawa

parameter xL ≤ 0.8. Similar comments apply to ∆Ms and εK . The correction to ∆MK

is negligible. These results have been confirmed in [15]. Larger effects could be present in

D0−D̄0 mixing [16], where in contrast to processes involving external down quarks, FCNC

transitions are already present at the tree level. But as analyzed in [17] these effects are

small.

On the other hand we have pointed out in [14, 18] that for 0.80 ≤ xL ≤ 0.95 and

f/v ≤ 10, which is still allowed by the electroweak precision studies, the non-decoupling

effects of the heavy T can significantly suppress the CKM element |Vtd| and the angle γ in

the unitarity triangle and simultaneously enhance ∆Ms. The recent data from CDF and D∅
collaborations [19, 20] disfavour this possibility, although in view of large non-perturbative

uncertainties in the evaluation of ∆Ms nothing conclusive can be said at present [21, 22].

Concerning FCNC decay processes only B → Xsγ and KL → π0νν̄ have been consid-

ered so far in the literature. While in [23] the LH corrections to the the decay B → Xsγ

have been found to be small, a large enhancement of the branching ratio for KL → π0νν̄

relative to the SM expectations has been found in [24].

In the present paper we extend our study of FCNC processes in the LH model to the

rare decays K+ → π+νν̄, KL → π0νν̄, Bs,d → µ+µ− and B → Xs,dνν̄. We also briefly

discuss the decay B → Xsγ.

The analysis of the rare decays in question turned out to be much more involved

than the one of particle–antiparticle mixing due to the presence of many more diagrams,

in particular the Z0, Z0
H and A0

H penguins that were absent in our previous study. In
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order to reduce the number of contributing diagrams we have performed all calculations

in the unitary gauge for the W±
L and W±

H propagators which has the nice virtue that only

exchanges of physical particles have to be considered.

Already in [14, 18] we have found that the box diagrams contributing to particle-

antiparticle mixing were divergent in the unitary gauge but these divergences cancelled each

other after the unitarity of the CKM matrix in the SM has been used and the contribution

of the heavy T included at O(v2/f2). Simply, the GIM mechanism [25] was sufficiently

effective to remove these divergences. In the case of rare decays, to which also penguin

diagrams contribute, the cancellation of divergences, even in the SM, is more involved

due to a different structure of the diagrams. It turns out that the contributions of box

diagrams to decay amplitudes remain divergent even after the GIM mechanism has been

used. However the full contribution of penguin diagrams is also divergent and in the SM

this divergence cancels the one from the box diagrams.

On the other hand in our analysis of the complete set of contributions to the weak

decay amplitudes in the LH model we find a remaining divergence in our unitary gauge

calculation. While all divergent contributions from the box diagrams are exactly cancelled

by gauge related divergences of the vertex contributions as in the SM, there is a remaining

divergence generated by the radiative corrections to the quark vertex. The origin of this

divergence can be traced to the structure of charge renormalization for the currents asso-

ciated with the dynamically broken generators. For linearly realized symmetries, current

conservation implies that the charges are not renormalized by radiative corrections. How-

ever, conserved currents associated with dynamically broken charges are not protected from

renormalization and the charge vertex can be modified by the radiative corrections. The

currents remain conserved because there is a corresponding modification of the Goldstone

boson contribution to the current matrix element. In the nonlinear sigma model used to

describe the little Higgs theory, these contributions can be divergent and depend on the

UV completion of the theory. In a linear sigma model, the UV cutoff would be identified

with symmetry breaking within the meson multiplet and related to the masses of the heavy

partners to the Goldstone bosons. A more general UV completion may even include charge

renormalization at tree level.

This mechanism is analogous to the dynamics associated with renormalization of axial-

vector charge, GA, in the constituent quark model. In particular, Peris [26] has shown that

the axial charge of the constituent quark is suppressed by the one-loop radiative corrections

in agreement with the quark model description of the axial charge of the physical baryons.

The divergent contributions to the weak decay amplitudes will be discussed in more detail

in Section 5.

In the process of our analysis we found several errors in certain Feynman rules for

the v2/f2 corrections to the Z0f̄f vertices and in the vertices involving the heavy T that

were given in [7]. Without correcting these rules the final result would contain many more

divergences and parametric dependencies that should be absent.

We are not the first to consider the decay KL → π0νν̄ within the LH model. In [24]

this decay has been analyzed with the result that its branching ratio could be enhanced

by a factor of two or more by LH contributions relative to the SM expectations [27]. This

– 3 –



J
H
E
P
1
1
(
2
0
0
6
)
0
6
2

would be a very nice result as an enhancement of this size in a theoretically clean decay

KL → π0νν̄ could clearly be distinguished from the SM in future experiments.

Unfortunately our analysis of KL → π0νν̄ presented here does not confirm the findings

of [24]. This possibly can be traced back to the fact that these authors used the Feynman

rules of [7] that according to our analysis cannot give correct results for rare decay branching

ratios in question. There is also the following qualitative difference between the final results

presented in [24] and ours. It is related to the additional weak mixing angle s′, present

in the LH model, that is analogous to sin θw in the SM. The short distance function X

relevant for FCNC processes with νν̄ in the final state cannot depend on sin θw and s′ due

to current conservation. Our results for X and the function Y , relevant for the FCNC

processes with l+l− in the final state, are indeed independent of sin θw and s′, while the

numerical results presented in [24] show a clear s′ dependence.

The main goal of our paper is the calculation of the LH contributions to the short

distance functions X and Y [28, 29]. This will allow us to compute the impact of these

contributions on various rare K and B decay branching ratios, which enter universally all

decays in models with minimal flavour violation [30] such as the LH model considered here.

Our main findings for K+ → π+νν̄, KL → π0νν̄, Bs → µ+µ− in the limit xL ≈ 1 have

been summarized in [18]. In this limit ∆Ms can be significantly enhanced with respect to

the SM, although this limit seems to be disfavoured by the recent CDF and D∅ data. Here

we present the details of these investigations in the full space of the parameters involved,

that requires the inclusion of many more diagrams. We also extend our analysis to other

rare decays and to the B → Xsγ decay.

Our paper is organized as follows. In Section 2 we recall briefly those elements of the

LH model that are necessary for the discussion of our calculation. In particular we give

the U(1) charges for quarks and leptons and present the list of the relevant Feynman rules

that at various places differ from those found in [7].

In Section 3 we discuss the functions X and Y within the SM, presenting for the first

time the expressions for the Z0 penguin function C and the relevant box functions Bνν̄

and Bµµ̄ in the unitary gauge. All these functions are divergent but inserting them in the

expressions for X and Y one recovers the known finite results. The result for C in the

unitary gauge will be particularly relevant for our LH calculation.

Section 4 is devoted to the calculation of X and Y within the LH model. We group

the diagrams in six classes. We present analytic results for each class and for the full

correction to the functions X and Y . In three of these classes the divergences in diagrams

belonging to a given class cancel each other. In the remaining classes the divergences with

a simple structure remain. In Section 5 we discuss in more detail the origin of the leftover

divergences that could be of interest for other little Higgs models. We also give an estimate

of these logarithmic enhanced terms, which turn out to be small.

In Section 6 we present the numerical results for various branching ratios. Thanks to

compendia in [31, 34, 35], that give various branching ratios in terms of the functions X

and Y we do not have to list once again all these formulae so that this section can be kept

brief in spite of many decays involved.

In Section 7 we first briefly discuss the B → Xsγ decay confirming basically the result
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of [23]. A brief summary of our paper is given in Section 8. Some technicalities are relegated

to the appendices.

2. Aspects of the Littlest Higgs Model

2.1 Gauge Boson Sector

Let us first recall certain aspects of the LH model that are relevant for our work. The full

exposition can be found in the original paper [4] and in [7]. We will follow as far as possible

the notations of [7].

The global symmetry in the LH model is a SU(5) with a locally gauged subgroup

G1 ⊗ G2 = [SU(2)1 ⊗ U(1)1] ⊗ [SU(2)2 ⊗ U(1)2] . (2.1)

In the process of the spontaneous breakdown of the global SU(5) at a scale f ∼ 1 TeV

to a global SO(5), the gauge group G1 ⊗ G2 is broken down to the electroweak SM gauge

group SU(2)L ⊗ U(1)Y . The resulting mass eigenstates in the gauge boson sector are

W = s W1 + cW2, B = s′B1 + c′B2, (2.2)

W ′ = −cW1 + s W2, B′ = −c′B1 + s′B2. (2.3)

Here W1 and W2 represent symbolically the three gauge bosons of SU(2)1 and SU(2)2,

respectively. B1 and B2 are the corresponding gauge bosons of U(1)1 and U(1)2.

Note that W = W1, W ′ = W2, B = B1, B′ = B2 for s = 1 and s′ = 1 and not for s = 0

and s′ = 0. Thus in fact s, s′, c and c′ are the sines and cosines of the mixing angles plus

90 degrees and not of the mixing angles as usually done in other cases in the literature.

The replacements s → c and c → s would be certainly a better choice. However, in order

not to mix up the comparison of Feynman rules presented here with the ones of [7] we will

use the conventions of these authors, remembering that the mixing between various groups

is absent for s = 1 and s′ = 1.

We have

s =
g2

√

g2
1 + g2

2

, c =
g1

√

g2
1 + g2

2

, (2.4)

s′ =
g′2

√

g′21 + g′22
, c′ =

g′1
√

g′21 + g′22
, (2.5)

where g1,2 are the SU(2)1,2 coupling constants and g′1,2 the ones of the U(1)1,2.

The W ′ and B′ gauge bosons receive the heavy masses

mW ′ =
f

2

√

g2
1 + g2

2 =
g

2sc
f, mB′ =

f

2
√

5

√

g′21 + g′22 =
g′

2
√

5s′c′
f, (2.6)

while the fields W and B remain massless at this stage and can be identified as the SM

gauge bosons with the couplings g and g′ given by

g = g1s = g2c, g′ = g′1s
′ = g′2c

′. (2.7)
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In the second step of the gauge symmetry breaking the SM group is broken down

to U(1)Q. The details of this breakdown are presented in [7]. As our results differ at

certain places from those given in this paper, we give below the most relevant formulae

summarizing subsequently the differences.

The mass eigenstates of the gauge bosons can be obtained by diagonalizing

Lmasses = W
′a
µ W

′aµ

(

m2
W ′

2
− 1

8
g2v2

)

+ (W 1
µW 1µ + W 2

µW 2µ)

(

1

8
g2v2

(

1 + r
v2

f2

))

+ W 3
µW 3µ

(

1

8
g2v2

(

1 + r
v2

f2

))

+ W a
µW

′aµ

(

−1

4
g2v2 (c2 − s2)

2sc

)

+ B′
µB

′µ

(

m2
B′

2
− 1

8
g′2v2

)

+ BµBµ

(

1

8
g′2v2

(

1 + r
v2

f2

))

+ BµB
′µ

(

−1

4
g′2v2 (c′2 − s′2)

2s′c′

)

+ W 3
µBµ

(

1

4
gg′v2

(

1 + r
v2

f2

))

+ W
′3
µ B

′µ

(

−1

8
gg′v2

(

cs′

sc′
+

sc′

cs′

))

+ W 3
µB

′µ

(

−1

4
gg′v2 (c′2 − s′2)

2s′c′

)

+ W
′3
µ Bµ

(

−1

4
gg′v2 (c2 − s2)

2sc

)

, (2.8)

with v denoting the vacuum expectation of the neutral components of the complex doublet.

In our analysis we will set the vacuum expectation of the Higgs triplet v′ to zero. For the

parameter r in (2.8) we find r = −1/6 that agrees with (A30) in [7] but differs from [8],

where r = 1/2 can be found. This difference has no direct impact on our calculation and

as discussed in [8] can be absorbed through the redefinition of the parameters involved.

The final mass eigenstates of the charged gauge bosons are W±
L and W±

H where the

indices L and H stand for “light” and “heavy”. The mass eigenstates are

WL = W +
v2

2f2
sc(c2 − s2)W ′, WH = W ′ − v2

2f2
sc(c2 − s2)W, (2.9)

and the corresponding masses read (r = −1/6)

M2
W±

L

= m2
w

(

1 − v2

f2

(

−r +
1

4
(c2 − s2)2

))

(2.10)

M2
W±

H

= m2
w

(

f2

s2c2v2
− 1

)

. (2.11)

The mass of the W± boson in the SM is given by mw ≡ gv/2.

The neutral gauge boson mass eigenstates are AL, ZL, AH and ZH given by

AL = −swW 3 + cwB,

ZL = cwW 3 + swB + xW ′

Z

v2

f2
W

′3 + xB′

Z

v2

f2
B

′

,

AH = B′ + xH
v2

f2
W

′3 − xB′

Z

v2

f2
(cwW 3 + swB),

– 6 –
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ZH = W
′3 − xH

v2

f2
B′ − xW ′

Z

v2

f2
(cwW 3 + swB), (2.12)

with

xH =
5

2
gg′

scs′c′(c2s
′2 + s2c

′2)

(5g2s′2c′2 − g′2s2c2)
,

xW ′

Z =
1

2cw
sc(c2 − s2) ,

xB′

Z =
5

2sw
s′c′(c

′2 − s
′2) . (2.13)

Here

sw =
g′

√

g2 + g
′2

, cw =
g

√

g2 + g
′2

. (2.14)

are the sine and the cosine of the Weinberg angle describing the weak mixing in the SM.

AL and ZL are the SM photon and Z0 boson and AH and ZH the new heavy photon

and heavy Z0 boson, respectively. Their masses are given by (r = −1/6)

M2
AL

= 0, (2.15)

M2
ZL

= m2
z

(

1 − v2

f2

(

−r +
1

4
(c2 − s2)2 +

5

4
(c′2 − s′2)2

))

, (2.16)

M2
AH

= m2
zs

2
w

(

f2

5s′2c′2v2
− 1

)

, (2.17)

M2
ZH

= m2
w

(

f2

s2c2v2
− 1

)

, (2.18)

where mz is the SM Z0 boson mass with mz ≡ gv/(2cw).

It is evident from (2.10) and (2.16) that the tree level SM relation

m2
w

m2
z

= c2
w (2.19)

is not valid for the W±
L and Z0

L masses. To O(v2/f2) we have [7]

M2
W±

L

M2
ZL

= c2
w

(

1 +
v2

f2

5

4
(c′2 − s′2)2

)

(2.20)

which manifests the breaking of the custodial SU(2) in the LH model. Formula (2.20) will

play an important role in our analysis.

From (2.10) and (2.11) we find

MW±

H

=
f

v

MW±

L

sc
, (2.21)

which is valid to order v2/f2.

The formulae given above have been already presented in [7] but at a few places our

results differ from the ones presented there. We would like to spell out these differences

explicitly.
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• In going from (2.8) to (2.12) we have not made any field redefinitions as done in [7].

As a result of this, the formulae in (2.12) differ from (A34) in [7] by B replaced by

−B. This difference is a matter of choice and has no impact on physical results.

• Our results for xW ′

Z and xB′

Z in (2.13) differ by signs from the ones given in (A35)

of [7]. This difference is crucial for the removal of the divergences in our calculations

in the unitary gauge.

• As seen in (2.17) and (2.18) we do not confirm at this order the presence of terms

proportional to xH that can be found in (A37) of [7]. Our result is consistent with

the LH model with T-parity [36]-[38], where the terms proportional to xH are also

absent at this order.

2.2 The Fermion Sector

Here it suffices to state that in addition to the standard quarks and leptons there is a new

heavy top quark T with the mass

mT =
f

v

mt
√

xL(1 − xL)

(

1 +
v2

f2

(

1

3
− xL(1 − xL)

))

, xL =
λ2

1

λ2
1 + λ2

2

, (2.22)

where λ1 is the Yukawa coupling in the (t, T ) sector and λ2 parametrizes the mass term

for T . As already discussed in [7, 14, 18], the parameter xL describes together with v/f

the size of the violation of the three generation CKM unitarity and is also crucial for the

gauge interactions of the heavy T quark with the ordinary down quarks. λi are expected

to be O(1) with [7]

λi ≥
mt

v
, or

1

λ2
1

+
1

λ2
2

≈
(

v

mt

)2

(2.23)

so that within a good approximation

λ1 =
mt

v

1√
1 − xL

, λ2 =
mt

v

1√
xL

. (2.24)

xL can in principle vary in the range 0 < xL < 1. However, for xL ≈ 0 and xL ≈ 1, the

mass mT will be very large and the theory will become non-perturbative. Additionally the

large mass would yield a fine-tuned model, which ruins the main motivation of the theory.

Varying xL in the range 0.2 ≤ xL ≤ 0.8 and f/v ≥ 5 as done in our paper does not induce

any fine-tuning [4] and also allows us to remain in the perturbative regime.

2.3 The Charged Scalar Sector

The LH model contains also a triplet of heavy scalars of which only Φ± will be of relevance

here. In the case of particle-antiparticle mixing and box diagram contributions to rare

decays, Φ± do not contribute at O(v2/f2), but they contribute at this order to ZL-penguin

diagrams. The mass of Φ± is given by

MΦ± =
√

2mH
f

v
(2.25)

with mH denoting the light Higgs mass.
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Vertex C Vertex C

W+
L ūidj

ig

2
√

2
Vij

(

1 − v2

f2 a
)

W+
H ūidj − ig

2
√

2
Vij

c
s

(

1 + b v2

f2

)

W+
L t̄dj

ig

2
√

2
Vtj

(

1 − v2

f2 (1
2
x2

L + a)
)

W+
H t̄dj − ig

2
√

2
Vtj

c
s

(

1 − v2

f2 (1
2
x2

L − b)
)

W+
L T̄ dj

ig

2
√

2
Vtj xL

v
f

(

1 + v2

f2 (d2 − a)
)

W+
H T̄ dj − ig

2
√

2
Vtj

c
s

xL
v
f

Table 1: Feynman Rules in Littlest Higgs Model for WL,H . Cγµ(1 − γ5).

2.4 Feynman Rules

2.4.1 Charged Gauge Boson–Fermion Interactions

The Feynman Rules for vertices involving the charged W±
L and W±

H bosons and quarks in

the notation Cγµ(1 − γ5) are given in table 1 where

a =
1

2
c2(c2 − s2), b =

1

2
s2(c2 − s2), d2 = −5

6
+

1

2
x2

L + 2xL(1 − xL). (2.26)

xL is given in (2.22). For leptons the Feynman rules can be obtained from the entries of the

first line with Vij = 1. The Vij are the usual CKM parameters. The issue of the violation

of the CKM unitarity at O(v2/f2) has been already discussed in detail in [14] and will

not be repeated here. Table 1 should be compared with table VIII of [7]. Due to different

phase conventions for the t and T fields, our rules for the vertices W±
L T̄ dj and W±

H T̄ dj

differ by a crucial factor i as already discussed in [14].

2.4.2 Neutral Gauge Boson–Fermion Interactions

The vertices involving quarks and leptons and the neutral gauge bosons Z0
L, Z0

H and A0
H ,

that are relevant for our paper, are presented in table 2, where gV and gA parametrize

universally the vertices as follows

iγµ(gV + gAγ5) (2.27)

and

u = (c′2 − s′2), a′ =
1

2
c′2(c′2 − s′2). (2.28)

These rules follow from (A55) of [7] that we confirmed except for the signs in xW ′

Z and xB′

Z

in (2.13) as discussed above. In spite of agreeing with (A55) the rules presented in table 2

differ surprisingly at various places from table IX of [7]. The differences are found in the

couplings ZLūu, ZLt̄t, ZLT̄ t, AH T̄ T and ZH T̄T . They all are crucial for the cancellation

of the divergences in our calculation. In order to make the comparison with [7] as simple

as possible, table 2 has exactly the same form as the table IX of [7]. Table 2 contains also

higher order terms in v/f that were required in our calculation of diagrams in classes 4

and 5 discussed below and were not present in [7].

As discussed in [7], the gauge invariance of the Yukawa interactions alone cannot

unambiguously fix all the U(1) charge values. The two parameters ye and yu that enter
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the Feynman Rules in table 2 are undetermined. If one requires that the U(1) charge

assignments be anomaly free, they can be fixed to be

ye =
3

5
, yu = −2

5
. (2.29)

On the other hand, as emphasized in [7], in an effective field theory below a cutoff, it is

unnecessary to be completely anomaly free as the anomalies could be cancelled by some

specific extra matter at the cutoff scale. In the rest of the paper we will set ye and yu

to the values given in (2.29) in order to avoid additional sensitivity to the physics at the

cutoff scale.

We do not present the rules for the triple gauge boson vertices as they can be found

in table VII of [7].

2.4.3 Charged Scalar Interactions

Only the following Feynman Rules given in [7] are of relevance in the present paper:

Φ+ūidj : − i√
2

g

4

mi

MWL

(1 − γ5)
v

f
Vij (2.30)

Φ+T̄ dj : − i√
2

g

4

mt

MWL

(1 − γ5)
λ1

λ2

v

f
Vtj (2.31)

Φ+Φ−ZL : i
g

cw
s2
w(p+ − p−)µ (2.32)

with p± being outgoing momenta of Φ±. For the Φ−d̄jui vertex (1 − γ5) should replaced

by (1 + γ5) and Vij by V ∗
ij. Similarly for Φ−d̄jT .

3. X and Y in the Standard Model

Many rare decays in the SM are governed by the functions X(xt) and Y (xt) with xt =

m2
t /M

2
W . It will turn out to be useful to recall the structure of the calculation of these

functions. Calculating the Z0-penguin contribution to the effective Hamiltonian for decays

with νν̄ and µµ̄ in the final state one finds

(Hνν̄
eff )Z =

g4

64π2

1

M2
Z cos2 θw

C(xt)(s̄d)V −A(ν̄ν)V −A, (3.1)

(Hµµ̄
eff )Z = − g4

64π2

1

M2
Z cos2 θw

C(xt)(s̄d)V −A(µ̄µ)V −A. (3.2)

The corresponding calculation of the box diagrams gives

(Hνν̄
eff )Box =

g4

64π2

1

M2
W

Bνν̄(xt)(s̄d)V −A(ν̄ν)V −A, (3.3)

(Hµµ̄
eff )Box = − g4

64π2

1

M2
W

Bµµ̄(xt)(s̄d)V −A(µ̄µ)V −A. (3.4)
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vertex gV gA

ALf̄f −eQf 0

ZLūu − g
2cw

{

(1
2
− 4

3
s2
w) − v2

f2

[

cwxW ′

Z c/2s − g
2cw

{

−1
2
− v2

f2

[

−cwxW ′

Z c/2s

+
swxB

′

Z

s′c′

(

2yu + 17
15

− 5
6
c′2

)

]}

+
swxB

′

Z

s′c′

(

1
5
− 1

2
c′2

)

]}

ZLd̄d − g
2cw

{

(−1
2

+ 2
3
s2
w) − v2

f2

[

−cwxW ′

Z c/2s − g
2cw

{

1
2
− v2

f2

[

cwxW ′

Z c/2s

+
swxB

′

Z

s′c′

(

2yu + 11
15

+ 1
6
c′2

)

]}

+
swxB

′

Z

s′c′

(

−1
5

+ 1
2
c′2

)

]}

ZLēe − g
2cw

{

(−1
2

+ 2s2
w) − v2

f2

[

−cwxW ′

Z c/2s − g
2cw

{

1
2
− v2

f2

[

cwxW ′

Z c/2s

+
swxB

′

Z

s′c′

(

2ye − 9
5

+ 3
2
c′2

)

]}

+
swxB

′

Z

s′c′

(

−1
5

+ 1
2
c′2

)

]}

ZLν̄ν − g
2cw

{

1
2
− v2

f2

[

cwxW ′

Z c/2s − g
2cw

{

−1
2
− v2

f2

[

−cwxW ′

Z c/2s

+
swxB

′

Z

s′c′

(

ye − 4
5

+ 1
2
c′2

)

]}

+
swxB

′

Z

s′c′

(

−ye + 4
5
− 1

2
c′2

)

]}

ZLt̄t − g
2cw

{

(1
2
− 4

3
s2
w) − v2

f2

[

x2
L/2 + cwxW ′

Z c/2s − g
2cw

{

−1
2
− v2

f2

[

−x2
L/2 − cwxW ′

Z c/2s

+
swxB

′

Z

s′c′

(

2yu + 17
15

− 5
6
c′2 − 1

5

λ2

1

λ2

1
+λ2

2

) ]}

+
swxB

′

Z

s′c′

(

1
5
− 1

2
c′2 − 1

5

λ2

1

λ2

1
+λ2

2

)

]}

ZLT̄ T g
2cw

{

4
3
s2
w + v2

f2

(

− 1
2
x2

L+ g
2cw

v2

f2

{

1
2
x2

L +
swxB

′

Z

s′c′
1
5
xL

}

swxB
′

Z

s′c′
(2yu + 14

15
− 4

3
c′2 + 1

5
xL)

)}

ZLT̄ t g
2cw

{

− v
f

1
2
xL+ v2

f2

swxB
′

Z

c′s′

(

1
5
xL

λ2

λ1

)

+ g
2cw

{

v
f

1
2
xL+ v2

f2

swxB
′

Z

c′s′

(

1
5
xL

λ2

λ1

)

+

v3

f3

(

1
4
x3

L− 1
2
xLd2+xL( c′

s′
swxB

′

Z

2
+ c

s

cwxW
′

Z

2
)
)}

v3

f3

(

− 1
4
x3

L+ 1
2
xLd2−xL(c

′

s′
swxB

′

Z

2
+ c

s

cwxW
′

Z

2
)
)}

AH ūu g′

2s′c′

(

2yu + 17
15

− 5
6
c′2

)

g′

2s′c′

(

1
5
− 1

2
c′2

)

AH d̄d g′

2s′c′

(

2yu + 11
15

+ 1
6
c′2

)

g′

2s′c′

(

−1
5

+ 1
2
c′2

)

AH ēe g′

2s′c′

(

2ye − 9
5

+ 3
2
c′2

)

g′

2s′c′

(

−1
5

+ 1
2
c′2

)

AH ν̄ν g′

2s′c′

(

ye − 4
5

+ 1
2
c′2

)

g′

2s′c′

(

−ye + 4
5
− 1

2
c′2

)

AH t̄t g′

2s′c′

(

2yu + 17
15

− 5
6
c′2 − 1

5

λ2

1

λ2

1
+λ2

2

)

g′

2s′c′

(

1
5
− 1

2
c′2 − 1

5

λ2

1

λ2

1
+λ2

2

)

AH T̄ T g′

2s′c′

(

2yu + 14
15

− 4
3
c′2 + 1

5

λ2

1

λ2

1
+λ2

2

)

g′

2s′c′
1
5

λ2

1

λ2

1
+λ2

2

AH T̄ t g′

2s′c′

(

1
5
xL

λ2

λ1
+ v

f
1
2
c′2xL

)

g′

2s′c′

(

1
5
xL

λ2

λ1
− v

f
1
2
c′2xL

)

ZH ūu gc/4s −gc/4s

ZH d̄d −gc/4s gc/4s

ZH ēe −gc/4s gc/4s

ZH ν̄ν gc/4s −gc/4s

ZH t̄t gc/4s −gc/4s

ZH T̄ T O(v2/f2) O(v2/f2)

ZH T̄ t gxLvc/4fs −gxLvc/4fs

Table 2: Feynman Rules in LH Model for ZL, AH and ZH . gV and gA defined in (2.27).
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Adding the Z0-penguin and box contributions and using the relations

M2
Z cos2 θw = M2

W ,
GF√

2
=

g2

8M2
W

(3.5)

one arrives at

Hνν̄
eff = M2

W

G2
F

2π2
X(xt)(s̄d)V −A(ν̄ν)V −A, (3.6)

Hµµ̄
eff = −M2

W

G2
F

2π2
Y (xt)(s̄d)V −A(µ̄µ)V −A, (3.7)

where

X(xt) = C(xt) + Bνν̄(xt), Y (xt) = C(xt) + Bµµ̄(xt). (3.8)

It is customary to use in (3.6) and (3.7) the relation

M2
W

G2
F

2π2
=

GF√
2

α

2π sin2 θw

, (3.9)

but we will not use it here for reasons discussed in the next section.

Now, C(xt), Bνν̄(xt) and Bµµ̄(xt) depend on the gauge used for the W± propagator.

One has [28, 29]

C(xt) = C0(xt) +
1

2
%̄(xt) (3.10)

Bνν̄(xt) = −4B0(xt) −
1

2
%̄(xt), Bµµ̄(xt) = −B0(xt) −

1

2
%̄(xt), (3.11)

where %̄(xt) is gauge dependent with %̄(xt) = 0 in the Feynman–t’Hooft gauge and

B0(xt) =
1

4

[

xt

1 − xt
+

xt log xt

(xt − 1)2

]

, (3.12)

C0(xt) =
xt

8

[

xt − 6

xt − 1
+

3xt + 2

(xt − 1)2
log xt

]

. (3.13)

Evidently X(xt) and Y (xt) are gauge independent and given in the SM as follows:

X(xt) =
xt

8

[

xt + 2

xt − 1
+

3xt − 6

(xt − 1)2
log xt

]

, (3.14)

Y (xt) =
xt

8

[

xt − 4

xt − 1
+

3xt

(xt − 1)2
log xt

]

. (3.15)

Explicit expression for %̄(xt) in an arbitrary Rξ gauge can be found in [28, 29]. In the

LH model we will calculate X and Y in the unitary gauge and we will need at one stage the

SM function C(xt) in this gauge. As the penguin and box diagrams are divergent in the

unitary gauge, even after the GIM mechanism has been invoked, we use the dimensional

regularization with D = 4 − 2ε to find

C(xt)unitary = − 1

16
xt

(

1

ε
+ ln

µ2

M2
WL

)

− x2
t − 7xt

32(1 − xt)
+

4xt − 2x2
t + x3

t

16(1 − xt)2
log xt (3.16)
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ZL

u, c, t u, c, t

WL

ν

s

ν

d

⊙

⊙

⊙⊙

ZL

WL WL

u, c, t

ν

s

ν

d

⊙

⊙⊙

ZL

d

WL

u, c, t

ν

s

ν

d

⊙

⊙

⊙

⊙

WL

l−u, c, t

WL

s

d

ν

ν

⊙

⊙⊙

⊙

ZL

WL WH

u, c, t

ν

s

ν

d

AH

u, c, t u, c, t

WL

ν

s

ν

d

AH

d

WL

u, c, t

ν

s

ν

d

Figure 1: Class 1. Penguin and box diagrams with SM particles and AH contributing to K → πνν̄

within the LH model at O(v2/f2).

and

%̄(xt)unitary = −1

8
xt

(

1

ε
+ ln

µ2

M2
WL

)

− −3x2
t + 17xt

16(1 − xt)
− 8x2

t − x3
t

8(xt − 1)2
log xt . (3.17)

The ln
(

µ2/M2
WL

)

terms disappear in the final expressions for X and Y as they always

accompany 1/ε that is not present in X and Y in the SM.

4. X and Y in the Littlest Higgs Model

4.1 Six Classes of Diagrams

In the LH model the functions X and Y are modified through the contributions of new

penguin and box diagrams involving the heavy fields WH , ZH , AH , T and Φ±. In order to

show transparently how the cancellation of most of the divergences takes place, it is useful

to group the diagrams contributing at O(v2/f2) into six distinct classes which are shown

in figures 1–6.

Class 1, displayed in figure 1, summarizes all diagrams with exclusively Standard Model

particles. The circles around the vertices of these diagrams indicate that the O(v2/f2)

corrections to their vertices without the x2
L terms are considered. Using the leading order

vertices one arrives at the SM X(xt) function. Furthermore, the WLWHZL triple vertex

and the (WL,AH) penguin diagrams with the standard top quark propagating belong to

this class.
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ZL

u, c, t u, c, t

WH

ν

s

ν

d

ZL

WH WH

u, c, t

ν

s

ν

d

ZL

d

WH

u, c, t

ν

s

ν

d

WH

l−u, c, t

WL

s

d

ν

ν

ZH

u, c, t u, c, t

WL

ν

s

ν

d

ZH

d

WL

u, c, t

ν

s

ν

d

ZH

WL WH

u, c, t

ν

s

ν

d

Figure 2: Class 2. Penguin and box diagrams with WH and ZH contributing to K → πνν̄ within

the LH model at O(v2/f2).

Class 2 contains the contributions of the standard top quark in the (WH ,ZL) and (WL,

ZH) penguin diagrams, the (WL,WH) box diagram and the diagrams with the WLWHZH

and WHWHZL triple vertices that are of order v2/f2. The whole contribution of this class

is proportional to the parameter c4.

The penguin and box diagrams involving the heavy T quark as well as the contributions

of the standard top quark that are proportional to x2
L are displayed in figure 3 and belong

to Class 3. The vertices of the standard top quark are marked by the diamonds in this

figure which implies that here the terms in the vertices proportional to x2
L, excluded from

Class 1, are considered. The approximate results for this class have been already presented

in [18]. Here we present exact formulae at O(v2/f2).

The divergences of Class 3 involving the heavy top quark T are proportional to

v2/f2 xT /ε. As the mass of the heavy T is of order f/v, these singularities are of O(1).

This makes clear that diagrams with singularities of the type v4/f4 xT /ε also have to be

considered and it turns out that the inclusion of these divergences is essential for the re-

moval of the singularities of the whole O(v2/f2) result except for the singularities discussed

in Section 5. The relevant contributions of this type containing the heavy top quark T and

being suppressed by v4/f4 are summarized in Class 4 and Class 5. Class 4 is very similar

to Class 2 with the standard top quark replaced by the heavy top quark and additional two

diagrams with t and T exchanges. Class 5 contains diagrams of Class 1 with t replaced by

T in the first five diagrams in Fig. 5 and with corrections added to the last five diagrams

in figure 3 as explicitly indicated in figure 5.
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ZL

t t

WL

ν

s

ν

d

ZL

WL WL

t

ν

s

ν

d

ZL

d

WL

t

ν

s

ν

d

WL

l−t

WL

s

d

ν

ν

ZL

T T

WL

ν

s

ν

d

ZL

WL WL

T

ν

s

ν

d

ZL

d

WL

T

ν

s

ν

d

ZL

T t

WL

ν

s

ν

d

WL

l−T

WL

s

d

ν

ν

Figure 3: Class 3. Top and heavy top quark contributions to K → πνν̄ in the LH model at

O(v2/f2) which are proportional to x2
L.

In the previous section we pointed out that due to the breakdown of the custodial

SU(2) symmetry at O(v2/f2) in the LH model, the SM relation (3.5) is replaced by (2.20).

In the process of expressing MZ in the Z-penguin in terms of MW all contributions of

O(1) belonging to ZL vertices obtain O(v2/f2) corrections. Explicitly, corrections to the

contribution of the SM penguin diagrams of Class 1 and ZL penguins with heavy top quark

T of Class 3 arise. We find then two additional contributions

∆XCustodial 1 = ∆YCustodial 1 =
v2

f2

5

4
(c′2 − s′2)2C(xt)unitary, (4.1)

∆XCustodial 3 = ∆YCustodial 3 =
v4

f4

5

4
(c′2 − s′2)2x2

LC(xT )Class 3, (4.2)
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ZH

T t

WL

ν

s

ν

d

ZH

WL WH

T

ν

s

ν

d

ZH

d

WL

T

ν

s

ν

d

WH

l−T

WL

s

d

ν

ν

ZL

T t

WH

ν

s

ν

d

ZL

T T

WH

ν

s

ν

d

ZL

WH WH

T

ν

s

ν

d

ZL

d

WH

T

ν

s

ν

d

Figure 4: Class 4. Penguin and box contributions to K → πνν̄ in the LH model at O(v2/f2)

which are proportional to v4/f4c4x2
L.

with C(xt)unitary given in (3.16). For C(xT )Class 3 we obtain

C(xT )Class 3 = −xT

16

(

1

ε
+ ln

µ2

M2
WL

)

− 3xT

32
+

(−2 + xT ) log xT

16
. (4.3)

It has to be emphasized that the inclusion of these two corrections resulting from the

breakdown of custodial symmetry in the LH model is essential for the removal of the s′

dependence as we will show in the next section and removes some divergences.

Finally in figure 6 we show the diagrams involving Φ± that contribute at O(v2/f2).

4.2 Analytic Results

In order to explicitly show how the divergences cancel, we list in Appendix B the singular-

ities in Class 1 to 3 in table 4, and the ones of Class 4 and 5 in table 5. The singularities

in Class 6 are listed in table 6. The entries of each class are arranged according to the

position of the corresponding diagrams in Figs. 1–6. The variables a, d2, u and a′ are

defined in (2.26) and (2.28).

The divergences in Class 2, Class 3 and Class 4 cancel separately within each class.

For the classes 1, 5 and 6 the situation is a bit different. Some divergences of Class 1 and

Class 5 can only be removed in the sum of the singularities of both classes together with

the inclusion of the singularities due to the breakdown of the custodial SU(2) symmetry,

xt

ε

v2

f2

(

− 5

64
(c′2 − s′2)2

)

, (4.4)
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AH

t T

WL

ν

s

ν

d

AH

T T

WL

ν

s

ν

d

AH

d

WL

T

ν

s

ν

d

ZL

WL WH

T

ν

s

ν

d

ZL

WL WL

T

ν

s

ν

d

⊙

⊙⊙

ZL

T T

WL

ν

s

ν

d

⊙

⊙

⊙⊙

ZL

t T

WL

ν

s

ν

d

⊙

⊙

⊙⊙

ZL

d

WL

T

ν

s

ν

d

⊙

⊙

⊙

⊙

WL

l−T

WL

s

d

ν

ν

⊙

⊙⊙

⊙

Figure 5: Class 5. Penguin and box contributions to K → πνν̄ in the LH model at O(v2/f2)

which are proportional to v4/f4xT x2
L.

xT

ε

v4

f4
x2

L

(

− 5

64
(c′2 − s′2)2

)

, (4.5)

which are also shown in table 4 and 5, respectively and can be obtained from (4.1) and (4.2).

Further on, singularities of the standard top quark are canceled by those of the heavy top

quark with the use of relation (2.22) as

x2
L

xT

ε
=

xL

1 − xL

xt

ε

f2

v2
. (4.6)

However, as already stated at the beginning of our paper singularities from classes 1

and 5 and the charged Higgs diagrams of figure 6 are left. We find

Cdiv =
xt

64

1

1 − xL

v2

f2

(

−S1

5
+ S2

)

, (4.7)
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Figure 6: Class 6. Penguin contributions to K → πνν̄ in the LH model at O(v2/f2) with internal

charged scalars Φ±.

where

S1 =
1

ε
+ ln

µ2

M2
WL

and S2 =
1

ε
+ ln

µ2

M2
Φ

. (4.8)

S1 results from classes 1 and 5 and S2 from charged Higgs diagrams. We will return to

discuss these singularities in the next Section. We caution the reader that the logarithms

associated with 1/ε have not been explicitly shown in tables 4-6.

We can then write the results for X and Y in the LH model as

XLH(xt, z) = XSM(xt) + ∆X1 + ∆X2 + ∆X3 + ∆X4 + ∆X5 + ∆X6 (4.9)

YLH(xt, z) = YSM(xt) + ∆Y1 + ∆Y2 + ∆Y3 + ∆Y4 + ∆Y5 + ∆Y6 (4.10)

where z denotes collectively the parameters in the LH model to which we will return below.

The finite parts of the two corrections due to the custodial relation given by (4.1) and (4.2)

were included into the X and Y functions of Class 1 and Class 5. We emphasize, that once

these corrections are included the dependence on s′ drops out.

For the six classes in question we find

∆X1 =
v2

f2
U1, ∆X2 = c4 v2

f2
U2 =

c2

s2

1

y
U2, (4.11)

∆X3 = x2
L

v2

f2
U3, ∆X4 = x2

Lc4 v4

f4
U4 = x2

L

c2

s2

1

y

v2

f2
U4, (4.12)

∆X5 = x2
L

v4

f4
U5, ∆X6 =

v2

f2

xt

128

1

1 − xL
(1 − 2xLU6(x̂T )) (4.13)
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∆Y1 =
v2

f2
V1, ∆Y2 = c4 v2

f2
V2 =

c2

s2

1

y
V2, (4.14)

∆Y3 = x2
L

v2

f2
V3, ∆Y4 = x2

Lc4 v4

f4
V4 = x2

L

c2

s2

1

y

v2

f2
V4, (4.15)

∆Y5 = x2
L

v4

f4
V5 ∆Y6 = ∆X6 (4.16)

with

U1(xt, y) = − (1 + 4xL)xt

320
S1 +

(1 + 4xL) (−7 + xt) xt

640 (−1 + xt)

+
(1 + 4xL)xt

(

4 − 2xt + x2
t

)

log xt

320 (−1 + xt)
2

− axt (11 + 4xt)

8 (−1 + xt)
− 3axt

(

−8 + 2xt + x2
t

)

log xt

8 (−1 + xt)
2

+
3axt log y

8
(4.17)

U2(xt, y) = − xt (4 − 7xt)

16(−1 + xt)
− 3xt

(

8 − 6xt − x2
t

)

log xt

16(−1 + xt)2
− xt log y

4
(4.18)

U3(xt, xT ) =
−3 + 2xt − 2x2

t

8(−1 + xt)
− xt

(

−4 − xt + 2x2
t

)

log xt

8(−1 + xt)2
+

(3 + 2xt) log xT

8
(4.19)

U4(xT , y) =
3xT y

16 (−xT + y)
+

3xT y2 log xT

16(xT − y)2
− 3xT y2 log y

16(xT − y)2
− xT log y

16
(4.20)

U5(xt, xT ) = − (−3 + 4xL)xT

320
S1 +

(

−7 − 12xL + 80x2
L

)

xT

640
+

(−3 + 4xL) xT log xT

320

+
3axT y (log xT − log y)

8 (xT − y)
(4.21)

U6(x̂T ) = − S2

xL
+

x̂T

(1 − x̂T )
+

x̂2
T log x̂T

(1 − x̂T )2
(4.22)

V1(xt, y) = − (1 + 4xL)xt

320
S1 +

(1 + 4xL) (−7 + xt) xt

640 (−1 + xt)

+
(1 + 4xL)xt

(

4 − 2xt + x2
t

)

log xt

320 (−1 + xt)
2

− axt (−13 + 4xt)

8 (−1 + xt)
− 3ax2

t (2 + xt) log xt

8 (−1 + xt)
2

+
3axt log y

8
(4.23)

V2(xt, y) = − xt (4 − 7xt)

16(−1 + xt)
− 3x2

t (2 − xt) log xt

16(−1 + xt)2
− xt log y

4
(4.24)

V3(xt, xT ) =

(

3 + 2xt − 2x2
t

)

8(−1 + xt)
− xt

(

2 − xt + 2x2
t

)

log xt

8(−1 + xt)2
+

(3 + 2xt) log xT

8
(4.25)

V4(xT , y) =
3xT y

16 (−xT + y)
+

3xT y2 log xT

16(xT − y)2
− 3xT y2 log y

16(xT − y)2
− xT log y

16
(4.26)
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V5(xt, xT ) = − (−3 + 4xL)xT

320
S1 +

(

−7 − 12xL + 80x2
L

)

xT

640
+

(−3 + 4xL) xT log xT

320

+
3axT y (log xT − log y)

8 (xT − y)
, (4.27)

where S1 and S2 have been defined in (4.8) and

xi =
m2

i

M2

W±

L

, y =
M2

W±

H

M2

W±

L

, x̂T =
m2

T

M2
Φ±

. (4.28)

In our calculations, we considered all contributions to the order v2/f2. This implies the

neglection of higher order terms in the functions Ui and Vi. As explained above, Class 4

and Class 5 even if suppressed by v4/f4 factors, contribute to the order considered as they

depend on heavy masses and xT , y ∝ f2/v2.

The formulae for ∆Xi and ∆Yi presented above are the main results of our paper.

5. The Issue of Leftover Singularities

It may seem surprising that FCNC amplitudes considered in the previous section con-

tain residual ultraviolet divergences reflected by the non-cancellation of the 1/ε poles at

O(v2/f2) in our unitary gauge calculation. Indeed due to GIM mechanism the FCNC pro-

cesses considered here vanish at tree level both in the SM and in the LH model in question.

Therefore within the particle content of the low energy representation of the LH model

there seems to be no freedom to cancel the left-over divergences as the necessary tree level

counter terms are absent.

At first sight then one could worry that the remaining divergence is an artifact of the

unitary gauge calculation. However, the fact that the dominant divergence comes from the

gauge independent charged triplet Higgs Φ± contribution gives us a hint that the residual

divergence is not an artifact of the unitary gauge but reflects the true sensitivity to the UV

completion of the LH model and the presence of additional contributions to the non-linear

sigma model used as the effective field theory at low energy.

In order to put this hypothesis on a solid ground we have analyzed the divergent part

of the amplitudes in the Feynman gauge. Then the box diagram contributions are finite

and it is sufficient to concentrate on the penguin (vertex) contributions. In this context let

us recall that in the SM the divergent contributions from penguin diagrams involving only

quarks and gauge bosons are removed by the GIM mechanism as the divergent terms are

mass independent. Some of the vertex diagrams with internal Goldstone bosons are also

divergent and being proportional to m2
i , (i = u, d, t) these divergences cannot be removed

by GIM mechanism. Within the SM they cancel, however, due to gauge invariance and

renormalizability of the theory.

In the LH model in Feynman gauge there are no divergences left from the pure gauge

boson diagrams of classes 1-5 shown in figures 1–5. Note also that the divergence from

the breakdown of the custodial symmetry is also absent as in the Feynman gauge, as seen

in (3.13), the SM function C is finite. Thus the left-over divergences come only from the
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charged triplet Higgs contribution in figure 6 and two charged Goldstone bosons that now

have to be included in the evaluation of the diagrams of classes 1-5. These are a charged

vector Higgs boson which is responsible for the mass of WH and the usual charged doublet

Higgs boson which gives mass to WL. We confirm that the left-over divergence coming

from these Goldstone boson contributions to classes 1-5 exactly reproduces the divergence

discovered in the corresponding unitary gauge calculation. Combined with the charged

triplet Higgs contribution we reproduce, in Feynman gauge, the full divergence of (4.7).

To understand the meaning of these ultraviolet divergences it is important to recall

that the LH model is a non-linear sigma model, an effective field theory that describes

the low energy behavior of a symmetric theory below the scale where the symmetry is

dynamically broken. In this region the currents associated with the dynamically broken

generators are conserved by a cancellation between the quark charge form factor current

and the Goldstone current. Quark currents will remain conserved even when the charge

form factor is renormalized so long as the Yukawa coupling of the Goldstone bosons to

the fermions has a corresponding renormalization. It is easy to confirm that this is exactly

what happens in the non-linear sigma model used above to describe the Little Higgs theory

and the divergence may be identified as a renormalization of the quark charges associated

with neutral current processes. The subsequent gauging of the Little Higgs theory only

rearranges the infrared structure of the theory but cannot modify the ultraviolet behavior.

The divergence in the charge form factors is not a true ultraviolet divergence but reflects

sensitivity to the UV completion of the theory.

This same mechanism can be observed in the phenomenological description of dynam-

ical chiral symmetry breaking in QCD using a non-linear realization of the pseudo-scalar

mesons as Goldstone bosons. Here the axial charges are dynamically broken but the axial

vector currents remain conserved due to the Goldstone currents of pions. To apply this

theory to the physical baryons, the axial charge of the baryon is observed to be renor-

malized, GA ∼ 1.26 6= 1. This renormalization is consistent with a conserved axial vector

current so long as the Goldstone coupling of the pions to the baryons is modified according

to the Goldberger-Treiman relation. In fact, the naive constituent quark model predicts

an even larger value of 5/3 for the axial charge of the baryon where the axial charge of

the quark is taken to be 1. As mentioned in the introduction, Peris [26] has considered

the next-to-leading order chiral loop corrections to the axial charge form factors of the

constituent quark. He uses a linear sigma model to regularize the non-linear theory and

finds a logarithmic sensitivity to the mass of the scalar partners to the pions reflecting

the chiral splitting within the meson multiplet. In the non-linear version, his calculation

would generate logarithmic divergences exactly analogous to the residual divergences we

have found in the Littlest Higgs model. In this model the scalar partner masses cannot

be larger than the cutoff of the theory Λ = 4πf . Using this scale, Peris shows that the

axial charge of the constituent quark is reduced by 20% in rough agreement with baryon

phenomenology.

The value of the charge form factors of dynamically broken generators will depend

on the ultraviolet completion of the Little Higgs model. The principal question concerns

how the dynamical symmetry breaking is transmitted to the fermions. As a minimum, the
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symmetry breaking is reflected through the Yukawa couplings of the Goldstone bosons to

the fermions. In this case the next-to-leading corrections may be estimated from Goldstone

loop corrections to the charge form factors and the scale of the logarithmic divergences

should not be larger than Λ. However, the light fermions may have a more complex

relation to the fundamental fermions of the ultraviolet completion of the theory and the

Little Higgs theory may have to include modifications of the charge form factors even at

leading order, as in the case of the baryon where GA 6= 1. We conclude that the residual

logarithmic divergences found in Section 4 are a real physical effect, but they also indicate

additional sensitivity to the ultraviolet completion of the Little Higgs models not usually

included in the phenomenology of these models.

Assuming the minimal case discussed above, we estimate the contributions of the

logarithmically divergent terms to the functions X and Y . Removing 1/ε terms from (4.7)

and setting µ = Λ we find

∆Xdiv = ∆Ydiv =
xt

64

1

1 − xL

v2

f2

[

ln
Λ2

M2
Φ

− 1

5
ln

Λ2

M2
WL

]

. (5.1)

Setting

Λ = 4πf, mH = 115GeV, v = 246GeV (5.2)

and using the values of MWL
and mt in table 3 we find for f/v = 5 and xL = 0.8

∆Xdiv = ∆Ydiv = 0.049, (5.3)

which should be compared with XSM ' 1.49 and YSM ' 0.95. Thus for this choice of

parameters the correction amounts to 3% and 5% for X and Y , respectively. Larger values

are obtained for xL closer to unity but such values are disfavoured by the measured value

of ∆Ms as discussed in the next section. Smaller values are found for larger f . In summary

the effect of the logarithmic divergences turns out to be small. However, we would like to

emphasize that our estimate takes only into account the contributions, where the fermions

only couple to the Goldstone bosons through the mass terms, not the GA-like terms, and

the sensitivity to the ultraviolet completion of the LH model could in principle be larger

than estimated here.

Few technical details on the issue of divergences are given in Appendix C.

6. Implications for Rare K and B Decays

The most recent compendium of formulae for rare decays considered here, in terms of the

functions X and Y can be found in two papers on rare decays in a model with one universal

extra dimension [34, 35]. In order to obtain the relevant branching ratios in the LH model

one only has to replace X(xt, 1/R) and Y (xt, 1/R) given there by XLH(v) and YLH(v)

calculated here. Moreover, we included the recently calculated NNLO QCD corrections [32]

and long distance contributions [33] to K+ → π+νν̄ that imply Pc = 0.42 ± 0.05 for the

charm contribution to this decay.
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mt = 163.8(32)GeV |Vub| = 0.00423(35)

MW = 80.425(38)GeV |Vcb| = 0.0416(7) [39]

α = 1/127.9 λ = 0.225(1) [40]

sin2 θW = 0.23120(15) γ = 71◦ ± 16◦ [41]

Table 3: Values of the experimental and theoretical quantities used as input parameters.

As we are mainly interested in the effects of the corrections coming from LH contribu-

tions we will consider the ratios

R+ ≡ Br (K+ → π+νν̄)LH

Br (K+ → π+νν̄)SM

, (6.1)

RL ≡
Br

(

KL → π0νν̄
)

LH

Br (KL → π0νν̄)SM

=
Br (B → Xs,dνν̄)

LH

Br (B → Xs,dνν̄)
SM

=

[

XLH

XSM

]2

, (6.2)

Rs,d ≡ Br (Bs,d → µ+µ−)
LH

Br (Bs,d → µ+µ−)
SM

=

[

YLH

YSM

]2

, (6.3)

where with the values of mt and MWL
in table 3 we have

XSM = 1.49, YSM = 0.95. (6.4)

In writing (6.2) and (6.3) we have assumed that the values of the CKM parameters are

the same in the SM and the LH model. As both models belong to the class of MFV

models for which the so-called universal unitarity triangle exists [30], this assumption can

certainly be justified. Moreover, in principle CKM parameters can be determined from

tree level processes independently of new physics contributions. This approach differs

from the one followed in [14] where the CKM parameters were determined using B0
d − B̄0

d

mixing. As the relevant one-loop function SLH in the LH model differs from the SSM, the

CKM parameters turned out to be different in both models in particular for xL close to

unity. However, for xL close to unity (∆Ms)LH is significantly larger than (∆Ms)SM in

contradiction with the recent CDF data that indicate ∆Ms to be smaller than (∆Ms)SM.

The large non-perturbative uncertainties in the evaluation of ∆Ms and also ∆Md do not

allow for a derivation of an upper bound on xL from B0
d,s − B̄0

d,s mixings but clearly xL

cannot be as high as the 0.95 used in [14, 18]. Therefore we will choose xL ≤ 0.8 in what

follows. Moreover, as stated above we will take the CKM parameters to be the same for the

SM and LH model and fixed to the central values collected in table 3, where mt = mt(mt)

in the MS scheme. Then the ratios in (6.2) and (6.3) only depend on the one-loop functions

X and Y and the dependence on the CKM parameters is only present in (6.1) due to the

relevant charm contribution in K+ → π+νν̄ in which the new physics contributions are

negligible.

For the three new parameters f , xL and s (see Section 2 for their definitions) we will

choose the ranges

f/v = 5 or 10, 0.2 ≤ xL ≤ 0.80, 0.3 ≤ s ≤ 0.95. (6.5)
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This parameter space is larger than the one allowed by other processes [7]-[13] which

typically imply f/v ≥ 10 or even higher. But we want to demonstrate that even for f/v

as low as 5, the corrections from LH contributions to X and Y are small.

In figure 7 we show the ratios (6.1)–(6.3) as functions of s for different values of xL

and f/v = 5. The corresponding plots for f/v = 10 are shown in Fig. 8.

We observe that R+, RL and Rd,s increase with increasing s and xL. For f/v = 5,

s = 0.95 and xL = 0.8 they reach 1.23, 1.33 and 1.51, respectively. However for f/v = 10

they are all below 1.15 and consequently it will be difficult to distinguish the LH predictions

for the branching ratios in question from the SM ones.

7. B → Xsγ Decay

One of the most popular decays used to constrain new physics contributions is the B → Xsγ

decay for which the measured branching ratio [39]

Br(B → Xsγ)exp = (3.52 ± 0.30) · 10−4 (7.1)

agrees well with the SM NLO prediction [42, 43]

Br(B → Xsγ)SM = (3.33 ± 0.29) · 10−4 , (7.2)

both given for Eγ > 1.6GeV and the SM prediction for mc(mc)/m
1S
b = 0.26. Br(B → Xdγ)

is in the ballpark of 1.5 · 10−5.

One should emphasize that within the SM this decay is governed by the already well

determined CKM element |Vts| so that dominant uncertainties in (7.2) result from the

truncation of the QCD perturbative series and the value of mc(µ) that enters the branching

ratio first at the NLO level. A very difficult NNLO calculation, presently in progress [43],

should reduce the error in (7.2) below 10%.

The effective Hamiltonian relevant for this decay within the SM is given as follows

HSM
eff (b̄ → s̄γ) = −GF√

2
VtsV

∗
tb

[

6
∑

i=1

Ci(µb)Qi + C7γ(µb)Q7γ + C8G(µb)Q8G

]

, (7.3)

where Qi are four-quark operators, Q7γ is the magnetic photon penguin operator and

Q8G the magnetic gluon penguin operator. The explicit expression for the branching ratio

Br(B → Xsγ) resulting from (7.3) is very complicated and we will not present it here. It

can be found for instance in [42].

For our purposes it is sufficient to know that in the LO approximation the Wilson

coefficients C7γ and C8G are given at the renormalization scale µW = O(MW ) as follows

C0
7γ(µW ) = −1

2
D′

0(xt) , C0
8G(µW ) = −1

2
E′

0(xt) , (7.4)

with the explicit expressions for D′
0(xt) and E′

0(xt) given by

D′
0 (xt) =

(8x3
t + 5x2

t − 7xt)

12(xt − 1)3
− (3x3

t − 2x2
t ) log xt

2(xt − 1)4
, (7.5)
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Figure 7: Normalized branching ratios RL, Rs,d, R+ for different xL = 0.2, 0.5, 0.8 (from top to

bottom) and f/v = 5.

E′
0 (xt) =

(x3
t − 5x2

t − 2xt)

4(xt − 1)3
+

3x2
t log xt

2(xt − 1)4
. (7.6)

In view of the importance of QCD corrections in this decay we will include these cor-

rections at NLO in the SM part, but only at LO in the new contributions. This amounts
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Figure 8: Normalized branching ratios RL, Rs,d, R+ for different xL = 0.2, 0.5, 0.8 (from top to

bottom) and f/v = 10.

to including only corrections to the renormalization of the operators in the LH part and

eventually to increase the scale µW to µ ≈ 500GeV at which the new particles are inte-

grated out. As the dominant QCD corrections to Br(B → Xsγ) come anyway from the

renormalization group evolution from µW down to µb = O(mb) and the matrix elements of
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the operators Q2 and Q7γ at µb, these dominant corrections are common to the SM and

LH parts.

Within the LO approximation the new physics contributions to B → Xsγ enter only

through the modifications of the functions D′
0(xt) and E′

0(xt). This modification can

be directly obtained by changing the arguments in D′
0(xt) and E′

0(xt) and introducing

corresponding factors that distinguish the LH model from SM contribution. It is easy

to see that the contributions with internal (t,W±
H ) and (T,W±

H ) are O(v4/f4), while the

contributions involving charged Higgs Φ± enter first at even higher order. Consequently

only the diagrams involving WL, t and T contribute at O(v2/f2). We find then
[

D′
0(xt, xT )

]

LH
= D′

0(xt) + ∆D′
0,

[

E′
0(xt, xT )

]

LH
= E′

0(xt) + ∆E′
0, (7.7)

where

∆D′
0 =

v2

f2

[

x2
L(D′

0(xT ) − D′
0(xt)) − 2aD′

0(xt)
]

. (7.8)

∆E′
0 is obtained from this equation by simply replacing D′

0 by E′
0.

The first calculation of B → Xsγ decay within the LH model has been presented in [23]

and the result given above confirms the one quoted in that paper.

As in [23] we find that the LH corrections amount to at most 3% and are consequently

smaller than the experimental and theoretical uncertainties in (7.1) and (7.2).

8. Conclusions

In this paper we have presented for the first time a complete analysis of O(v2/f2) con-

tributions to rare K and B decays in the LH model of [1]-[5]. The resulting corrections

turned out to be small for values of the high energy scale f = O(2− 3)TeV as required by

electroweak precision studies. While this is at first sight disappointing, one should recall

the upper bounds on rare decay branching ratios in MFV models [44] that do not allow for

large departures from the SM predictions within the MFV scenario. Thus the LH model

considered here is consistent with these bounds.

On the technical side we have given a complete list of Feynman rules relevant for

the calculation of penguin and box diagrams that could be used for other processes. As

a byproduct we have also presented for the first time the calculations of the X and Y

functions in the unitary gauge both in the SM and the LH model. Some of the results

obtained here can be used to calculate the T–even contributions to rare decays in the LH

model with T–parity [38].

Probably the most interesting result of our paper is the left-over singularity that signals

some sensitivity of the final result to the UV completion of the theory. A detailed discussion

of this issue and of possible implications of these findings for other LH models can be found

in Section 5. A similar singularity has been found independently in the context of the study

of electroweak precision constraints in [45].

Large new physics effects have been found recently in the case of B0
d,s − B̄0

d,s mixing

in the LH model with T-parity, where the presence of mirror fermions implies non-MFV

interactions [37, 46]. The analysis of rare K and B decays presented here will be generalized

to this model in [38].
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A. The Fermion Sector

In order to calculate O(v4/f4xT ) terms in classes 4 and 5 we had to generalize the rules

of [7] by including certain higher order terms in v/f . Here we present some details of this

derivation that also summarize the differences between our work and [7] discussed in detail

in [14].

The Yukawa Lagrangian for the top sector is given by [7]

Lt =λ2f t̃t̃′c − iλ1t3

[√
2h0 +

i

f
(h−φ+ +

√
2h0∗φ0)

]

u′c
3

+ iλ1t̃

[

−if +
i

f
(h+h− + h0h0∗ + 2φ++φ−− + 2φ+φ− + 2φ0φ0∗)

]

u′c
3 + h.c. (A.1)

where t3 and t̃ are two components of the left handed vector like fields χi = (b3, t3, t̃)

replacing the third SM quark doublet and u′c
3 and t̃′c are the corresponding right handed

singlets. h and φ are the doublet and triplet scalar fields of the unbroken SU(2)L ⊗U(1)Y .

Spontaneous symmetry breaking via the vacuum expectation values of the h and φ fields,

〈h0〉 = v/
√

2 and 〈iφ0〉 = v′ generates the fermion masses. In the following we set v′ = 0 as

we did in our analysis. Diagonalizing the Lagrangian (A.1), one obtains the left and right

handed mass eigenstates of the light and the heavy top quark. The field rotation, that has

to be performed, is given by

tL = cLt3 − sLt̃, tcR = cRu′c
3 − sRt̃′c, (A.2)

TL = cLt3 + sLt̃, T c
R = cRu′c

3 + sRt̃′c, (A.3)

where we find

sR =
λ1

√

λ2
1 + λ2

2

(

1 − v2

f2

λ2
2

λ2
1 + λ2

2

(

1

2
− λ2

1

λ2
1 + λ2

2

)

+ O(v4/f4)

)

, (A.4)

cR =
λ2

√

λ2
1 + λ2

2

(

1 +
v2

f2

λ2
1

λ2
1 + λ2

2

(

1

2
− λ2

1

λ2
1 + λ2

2

)

+ O(v4/f4)

)

, (A.5)

sL =
λ2

1

λ2
1 + λ2

2

v

f

(

1 +
v2

f2

(

−5

6
+

1

2

λ4
1

(λ2
1 + λ2

2)
2

+ 2
λ2

1

λ2
1 + λ2

2

(

1 − λ2
1

λ2
1 + λ2

2

)))

+O(v4/f4), (A.6)
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cL = 1 − v2

f2

1

2

λ4
1

(λ2
1 + λ2

2)
2

+ O(v4/f4). (A.7)

In order to obtain positive and real valued masses, it is necessary to absorb a factor −i

into the t3 field in (A.1). A field redefinition of this kind was suggested but not performed

by the authors of [7]. Then the masses of the light and the heavy top quark are given by

mt =
vλ1λ2

√

λ2
1 + λ2

2

(

1 +
v2

f2

(

−1

3
+

1

2

λ2
1

λ2
1 + λ2

2

(

1 − λ2
1

λ2
1 + λ2

2

))

+ O(v4/f4)

)

, (A.8)

mT = f
√

λ2
1 + λ2

2

(

1 − v2

f2

1

2

λ2
1

λ2
1 + λ2

2

(

1 − λ2
1

λ2
1 + λ2

2

)

+ O(v4/f4)

)

. (A.9)

The formulae of this section differ from the ones in [7] in the following points:

• The masses mt and mT in (A.8) and (A.9) are real valued and positive.

• sR and cR have the opposite sign in front of the last term of the O(v2/f2) expressions.

B. Tables of Singularities

C. Comments on the Leftover Singularities

In Section 5 we found that in the amplitudes for FCNCs leftover singularities remained.

As pointed out these divergent terms do not depend on the choice of a special gauge. This

led to the conclusion that these divergences are a real physical effect and can be identified

as a renormalization of the quark charges. In our calculation the divergent quark vertex

contribution, using fundamental gauge fields, reads

Vquark =
1

4
(λ1v)2

1

(4π)2
1

ε
Ṽquarkγµ (1 − γ5) , (C.1)

where Ṽquark is given by

Ṽquark =
4

v2

{

1

4

(

g1W
3
1

)

− 1

4

(

g2W
3
2

)

+
1

20

(

g′1B1

)

− 1

20

(

g′2B2

)

}

. (C.2)

Rewriting this result in a mass diagonal basis then yields

Ṽquark =
1

v2

g

sc
ZH +

1

5

1

v2

g′

s′c′
AH +

1

2

1

f2

[

−c2 + s2 + c′2 − s′2
]

√

g2 + g′2ZL. (C.3)

As it can be seen from (C.3) the coefficient of the physical Z-boson is suppressed in two

different scenarios:

• if the gauge couplings of the two gauge groups are identical, i.e. c = s and c′ = s′.

This, for example, happens in the case of the T-even sector of the Littlest Higgs

Model with T-parity [38], where c and s are set to c = s = 1/
√

2 = c′ = s′.

• if one of the product gauge groups is strongly coupled, i.e. if c, c′ ≈ 1 or s, s′ ≈ 1.
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Column 1 Column 2 Column 3 Column 4

Class 1. Diagrams shown in figure 1.

1 xt

ε

(

− 1
16

+
v2

f2

(

5
8

a−1
8

u+
5
8

a′+
1
16

uxL

)

)

xt

ε

(

1
16

+
v2

f2

(

−1
4

a
)

)

2 xt

ε
v2

f2

(

−3
8

a
)

xt

ε
v2

f2

(

(

c′2−2
5

)2(
− 5

16

)

−1
8

xL

(

c′2−2
5

)

)

Custodial Correction: xt

ε
v2

f2

(

− 5
64

(c′2−s′2)2
)

Class 2. Diagrams shown in figure 2.

1 xt

ε
v2

f2

(

−1
4

c4
)

(1−s2
w) xt

ε
v2

f2

(

3
8

c4
)

(1−s2
w) xt

ε
v2

f2

(

− 3
16

c4
)

(1−2
3

s2
w) xt

ε
v2

f2

(

1
8

c4
)

2 xt

ε
v2

f2

(

−1
4

c4
)

xt

ε
v2

f2

(

− 3
16

c4
)

xt

ε
v2

f2

(

+
3
8

c4
)

Class 3. Diagrams shown in figure 3.

1 xt

ε
v2

f2 x2

L

(

1
2
−1

4
s2
w

)

xt

ε
v2

f2 x2

L

(

−3
8

)

(1−s2
w) xt

ε
v2

f2 x2

L

(

3
16

−1
8

s2
w

)

2 xt

ε
v2

f2 x2

L

(

− 1
16

)

xT

ε
v2

f2 x2

L

(

1
4

s2
w

)

xT

ε
v2

f2 x2

L

(

3
8

)

(1−s2
w)

3 xT

ε
v2

f2 x2

L

(

− 3
16

+
1
8

s2
w

) (

xt

ε
+

xT

ε

)

v2

f2 x2

L

(

−1
4

)

xT

ε
v2

f2 x2

L

(

1
16

)

Table 4: 1/ε Singularities to O(v2/f2) of the Classes 1-3. The entries are arranged according to

the position of the corresponding diagrams in figure 1–3.
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Class 5. Diagrams shown in figure 5.
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Table 5: 1/ε Singularities to O(v2/f2) of the Classes 4 and 5. The entries are arranged according

to the position of the corresponding diagrams in figure 4 and 5.
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